傳送帶上運動物品的動態圖像捕捉和幾何參數測
1 引(yin) 言
在自動化生產過程中,傳送帶和物(wu)流系統是生產線(xian)的(de)重要組成(cheng)部分。通常情(qing)況下(xia)為了實現物(wu)品(pin)的(de)分類處(chu)理(li)(li)或完成(cheng)產品(pin)的(de)質量控制等,我(wo)們需(xu)要了解物(wu)品(pin)的(de)某(mou)些細節情(qing)況如幾何參數,因此,基(ji)于圖(tu)像處(chu)理(li)(li)的(de)測量方(fang)法(fa)得到越來越多的(de)應用。測量方(fang)式主要有靜(jing)態(tai)和動態(tai)兩種,靜(jing)態(tai)是指目標對象(xiang)相對攝像機(ji)靜(jing)止(zhi),用這種方(fang)式可以獲(huo)得清晰的(de)圖(tu)像,而動態(tai)方(fang)式下(xia)則得不(bu)到清晰的(de)圖(tu)像。
在某(mou)些場合(he)下(xia),無(wu)法獲得靜態圖(tu)像,而運(yun)動目標(biao)的(de)(de)成像又會造成圖(tu)像質(zhi)量的(de)(de)下(xia)降(jiang), 為避免出現圖(tu)像的(de)(de)降(jiang)質(zhi),或者(zhe)考慮到其它(ta)因素如機械傳動系(xi)統(tong)、運(yun)動特性(xing)等(deng),我們一般采用運(yun)動狀態下(xia)的(de)(de)圖(tu)像捕(bu)捉和處理(li)的(de)(de)方法。雖然(ran)采用平穩運(yun)動系(xi)統(tong)可以減少傳動過(guo)程中的(de)(de)振(zhen)動,提高系(xi)統(tong)的(de)(de)運(yun)轉效率,簡化系(xi)統(tong)的(de)(de)設計(ji),但同時圖(tu)像處理(li)的(de)(de)時間也(ye)會加長(chang)。
本文將動(dong)態的(de)(de)圖(tu)像測量(liang)方法應用于羽毛(mao)球(qiu)生產過程中的(de)(de)毛(mao)片彎(wan)度等(deng)參(can)數的(de)(de)測量(liang),介紹了整個系統的(de)(de)組成和運行(xing)的(de)(de)情(qing)況,并提供(gong)了過程的(de)(de)主要結(jie)果。
2 運(yun)動圖像的恢復原理
了解運(yun)動(dong)圖像(xiang)的恢復原理,首先應了解圖像(xiang)的運(yun)動(dong)模型。
根據Gonzalez水平(ping)(ping)圖像運動(dong)模型(xing)〔1〕,設(she)原(yuan)圖像為(wei)f(x,y),在(zai)曝(pu)(pu)光時(shi)間T內(nei)原(yuan)圖像沿水平(ping)(ping)方向(xiang)移(yi)動(dong)距離為(wei)a,移(yi)動(dong)速度恒定且曝(pu)(pu)光線性,則(ze)
這是一個遞(di)推關系式,說明當(dang)前位(wei)(wei)置(zhi)的(de)恢復圖(tu)(tu)像可以由離當(dang)前位(wei)(wei)置(zhi)a處的(de)恢復圖(tu)(tu)像推算得出,模糊圖(tu)(tu)像g(x)的(de)導數總可以求(qiu)得。只(zhi)要求(qiu)出長(chang)度為a的(de)圖(tu)(tu)像,整個圖(tu)(tu)像都可以根(gen)據上述遞(di)推關系獲得。
設m為x/a的整(zheng)數部分,恢復圖像可以由下式近(jin)似得出〔2〕
圖像(xiang)恢復(fu)(fu)的(de)(de)質(zhi)量取(qu)決(jue)于恢復(fu)(fu)關系式中(zhong)各參(can)數的(de)(de)選取(qu)。A和γ對恢復(fu)(fu)圖像(xiang)的(de)(de)背景和對比有(you)影(ying)響,而a對恢復(fu)(fu)圖像(xiang)的(de)(de)質(zhi)量起決(jue)定作(zuo)用。通常情(qing)況下采用搜索方法(fa)獲得合適(shi)的(de)(de)值。在參(can)考文獻〔2〕中(zhong)采用均方誤差準則下實現自動(dong)搜索的(de)(de)方法(fa)。本文的(de)(de)測(ce)量環(huan)境下,由于運動(dong)速度恒(heng)定,參(can)數a一(yi)旦確定后當作(zuo)一(yi)個參(can)數來處理。
3 基于圖像處理的幾何參數計(ji)算
3.1 羽毛球毛片(pian)參數
羽(yu)毛(mao)球質量的(de)(de)重(zhong)要(yao)指標是其飛(fei)行的(de)(de)穩定性,即在(zai)飛(fei)行中不(bu)出現搖擺或變線(xian)。羽(yu)毛(mao)球飛(fei)行的(de)(de)氣動機(ji)理(li)十分復雜,這里不(bu)作研究。只要(yao)能(neng)保(bao)證形(xing)狀(zhuang)相(xiang)同的(de)(de)毛(mao)片(pian)插在(zai)同一個球上,則(ze)在(zai)正(zheng)常(chang)工序下生產出來的(de)(de)羽(yu)毛(mao)球就會具有(you)良好的(de)(de)飛(fei)行穩定性。傳統的(de)(de)測量方法(fa)不(bu)僅速度慢(man)而且夾(jia)具對(dui)軟(ruan)性材(cai)料(liao)的(de)(de)測量結果(guo)產生影響。本文嘗試利用圖像(xiang)捕(bu)捉設(she)備對(dui)傳送(song)帶上的(de)(de)毛(mao)片(pian)進行動態(tai)捕(bu)捉和處理(li),獲(huo)得(de)毛(mao)片(pian)的(de)(de)形(xing)狀(zhuang)參數(shu)后按(an)形(xing)狀(zhuang)參數(shu)分檔,保(bao)證具有(you)相(xiang)同形(xing)狀(zhuang)的(de)(de)16根毛(mao)片(pian)插在(zai)同一個羽(yu)毛(mao)球上。
毛(mao)(mao)(mao)片的(de)(de)主要幾何參數有毛(mao)(mao)(mao)桿(gan)的(de)(de)彎度(du)(du)、拱(gong)度(du)(du)和毛(mao)(mao)(mao)桿(gan)頂部(bu)的(de)(de)粗細(xi)等。這里(li)的(de)(de)彎度(du)(du)指的(de)(de)是毛(mao)(mao)(mao)桿(gan)中(zhong)(zhong)心(xin)線(xian)與其切線(xian)在(zai)頂部(bu)位置處的(de)(de)水平(ping)距離,拱(gong)度(du)(du)為(wei)毛(mao)(mao)(mao)片在(zai)平(ping)放時的(de)(de)拱(gong)高。這里(li)主要介紹彎度(du)(du)的(de)(de)測量方法(fa),先提取毛(mao)(mao)(mao)桿(gan)的(de)(de)邊(bian)緣并計算中(zhong)(zhong)心(xin)位置,然后擬合毛(mao)(mao)(mao)桿(gan)中(zhong)(zhong)心(xin)線(xian),最后計算彎度(du)(du)值。在(zai)此過程中(zhong)(zhong)粗細(xi)也同(tong)時得出。
3.2 圖像的邊緣(yuan)提取和邊緣(yuan)數據的采(cai)集(ji)
物體的邊緣在(zai)圖(tu)像上反映出局部特性的不連(lian)續性。理(li)想的邊緣有階(jie)躍型、房頂(ding)型和凸(tu)緣型,由于圖(tu)像噪聲的存在(zai),實(shi)際的邊緣變得十分復雜(za)。
邊緣檢測通常采用(yong)微分(fen)類算(suan)(suan)子(zi)(zi)(zi)實現(xian)。這類算(suan)(suan)子(zi)(zi)(zi)有Sobel算(suan)(suan)子(zi)(zi)(zi)、Kirsh算(suan)(suan)子(zi)(zi)(zi)和(he)Laplacian算(suan)(suan)子(zi)(zi)(zi)等,前兩個(ge)算(suan)(suan)子(zi)(zi)(zi)為(wei)(wei)梯度(du)(du)算(suan)(suan)子(zi)(zi)(zi),后者(zhe)為(wei)(wei)二階微分(fen)算(suan)(suan)子(zi)(zi)(zi)。Sobel梯度(du)(du)算(suan)(suan)子(zi)(zi)(zi)在兩個(ge)方(fang)向(xiang)上選取微分(fen)大的值(zhi)作(zuo)為(wei)(wei)其梯度(du)(du)值(zhi),顯然(ran)當兩個(ge)方(fang)向(xiang)上微分(fen)值(zhi)大小相等時梯度(du)(du)的誤差最大;而Kirsh則在八個(ge)方(fang)向(xiang)上計算(suan)(suan)微分(fen)并(bing)以(yi)最大制作(zuo)為(wei)(wei)梯度(du)(du)值(zhi)〔3〕,算(suan)(suan)子(zi)(zi)(zi)法的計算(suan)(suan)結果作(zuo)為(wei)(wei)邊緣判別的依據;Laplacian算(suan)(suan)子(zi)(zi)(zi)則是不依賴(lai)邊緣方(fang)向(xiang)的二階算(suan)(suan)子(zi)(zi)(zi),具有旋轉不變性。
由于微(wei)分類算(suan)子的(de)(de)固有特性,邊(bian)(bian)緣檢測都(dou)會受到噪聲影響。采(cai)用(yong)濾(lv)(lv)(lv)波(bo)方(fang)(fang)法可以有效地抑制噪聲的(de)(de)干擾,但同時(shi)(shi)(shi)也(ye)給邊(bian)(bian)緣產(chan)生一定程度(du)的(de)(de)鈍(dun)化(hua)(hua),這種鈍(dun)化(hua)(hua)作(zuo)用(yong)會影響邊(bian)(bian)緣的(de)(de)提取 ,因(yin)此關(guan)鍵在(zai)于濾(lv)(lv)(lv)波(bo)方(fang)(fang)案的(de)(de)選(xuan)擇。上述微(wei)分類算(suan)子都(dou)采(cai)用(yong)了濾(lv)(lv)(lv)波(bo)方(fang)(fang)法 。Sobel算(suan)子采(cai)用(yong)了三(san)點加權平(ping)均,當邊(bian)(bian)緣在(zai)水平(ping)或豎直方(fang)(fang)向時(shi)(shi)(shi),實際的(de)(de)濾(lv)(lv)(lv)波(bo)沿著邊(bian)(bian)緣進(jin)行,因(yin)此濾(lv)(lv)(lv)波(bo)對(dui)邊(bian)(bian)緣的(de)(de)鈍(dun)化(hua)(hua)作(zuo)用(yong)最(zui)小(xiao);而當邊(bian)(bian)緣在(zai)45°或135°方(fang)(fang)向時(shi)(shi)(shi),濾(lv)(lv)(lv)波(bo)點與邊(bian)(bian)緣在(zai)方(fang)(fang)向上相差最(zui)大(da)(da),此時(shi)(shi)(shi)濾(lv)(lv)(lv)波(bo)對(dui)邊(bian)(bian)緣的(de)(de)鈍(dun)化(hua)(hua)作(zuo)用(yong)也(ye)最(zui)大(da)(da)。因(yin)此,選(xuan)擇與邊(bian)(bian)緣較為一致的(de)(de)核(kernel)能(neng)在(zai)噪聲抑制和邊(bian)(bian)緣保(bao)持方(fang)(fang)面獲得滿意(yi)的(de)(de)結果。
下一篇::橡膠輸送帶的競爭與優勢